

Poster Section: Hall C 4-9 #701, 11:30

Latest paper update on the website!

LCA-on-the-Line:

Benchmarking Out of Distribution Generalization with Class Taxonomies

Jia Shi, Gautam Gare, Jinjin Tian, Siqi Chai, Zhiqiu Lin, Arun Vasudevan, Di Feng, Francesco Ferroni, Shu Kong

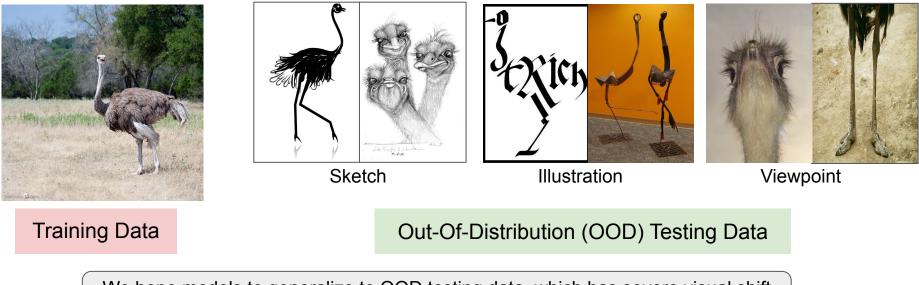
Independent and Identically Distributed (IID) assumption of ML

Training Data

In-Distribution (ID) Testing Data

Machine learning assumes testing data is independent and identically distributed (IID) with the training data.

Models will encounter OOD testing data



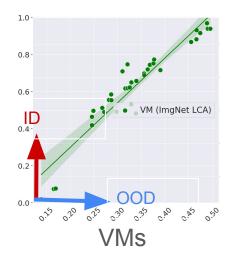
We hope models to generalize to OOD testing data, which has severe visual shift from the training data.

Given a pool of models, how can we predict which model generalizes to OOD testing data better?

Predict OOD performance with ID accuracy

Accuracy-on-the-line [1]: empirically, OOD performance is strongly correlated with ID performance across models and distribution shifts.

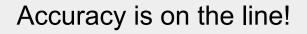
This metric predicts the performance of **Vision models (VMs)** only.

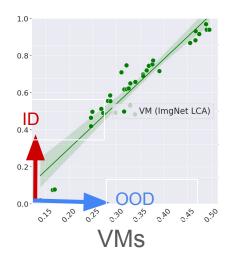


Predict OOD performance with ID accuracy

Accuracy-on-the-line [1]: empirically, OOD performance is strongly correlated with ID performance across models and distribution shifts.

This metric predicts the performance of **Vision models (VMs)** only.





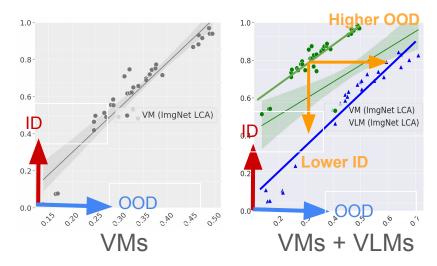
Accuracy is not on the line with VMs + VLMs

Accuracy-on-the-line [1]: empirically, OOD performance is strongly correlated with ID performance across models and distribution shifts.

This metric predicts the performance of Vision models (VMs) only.

This metric *cannot* reliably predicts the OOD performance of Vision models (VMs) + Vision Language models (VLMs).

Difference (VMs, VLMs) = modality, training data source/size, loss, etc



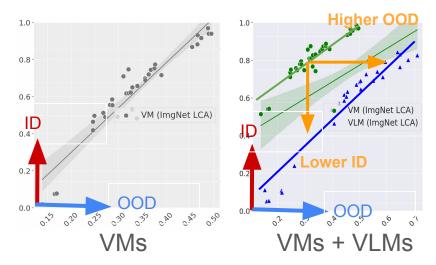
Accuracy is not on the line with VMs + VLMs

Accuracy-on-the-line [1]: empirically, OOD performance is strongly correlated with ID performance across models and distribution shifts.

This metric predicts the performance of Vision models (VMs) only.

This metric *cannot* reliably predicts the OOD performance of Vision models (VMs) + Vision Language models (VLMs).

Accuracy is **not** on the line!

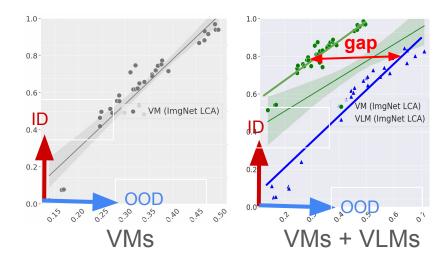


Accuracy is not on the line with VMs + VLMs

Accuracy-on-the-line [1]: empirically, OOD performance is strongly correlated with ID performance across models and distribution shifts.

This metric predicts the performance of Vision models (VMs) only.

This metric *cannot* reliably predicts the OOD performance of Vision models (VMs) + Vision Language models (VLMs).



In-distribution (ID) accuracy might be *biased* by models settings, like modality and training data source.

[1] J. Miller, et al., "Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization", ICML, 2021.
[2] T. Taori, et al., "Measuring Robustness to Natural Distribution Shifts in Image Classification", NeurIPS, 2020.

LCA distance is a robust generalization indicator

1. What is LCA distance?

2. Why should we use LCA distance?

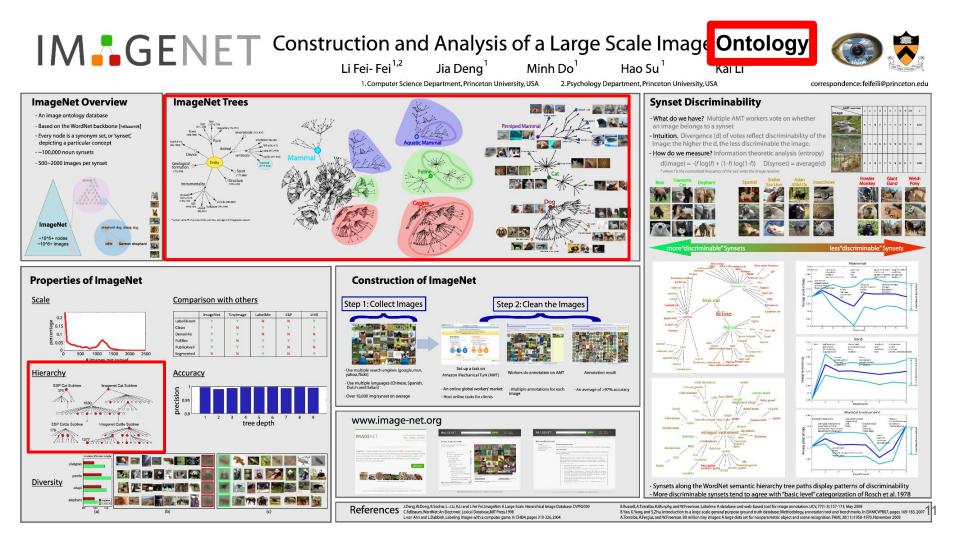
3. How can we use LCA distance to improve model generalization?

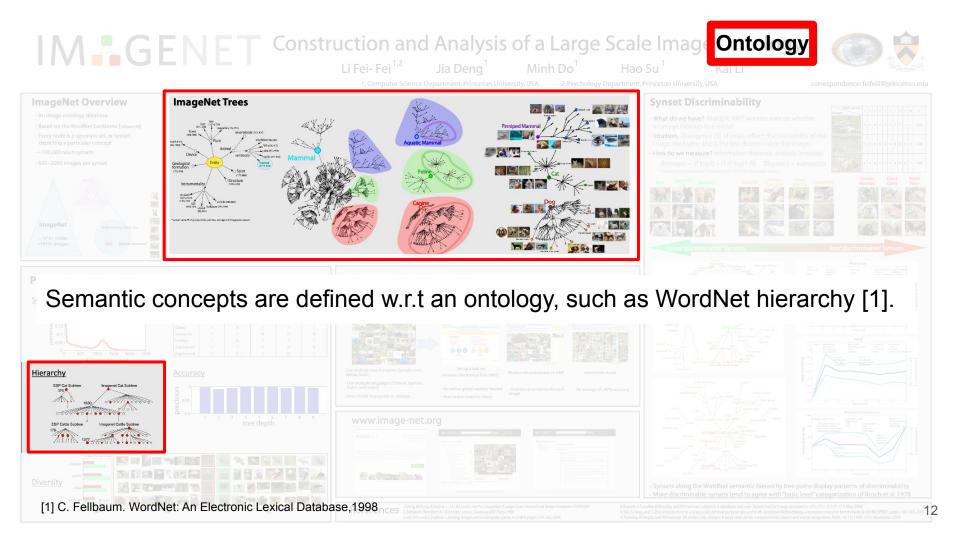
LCA distance is a robust generalization indicator

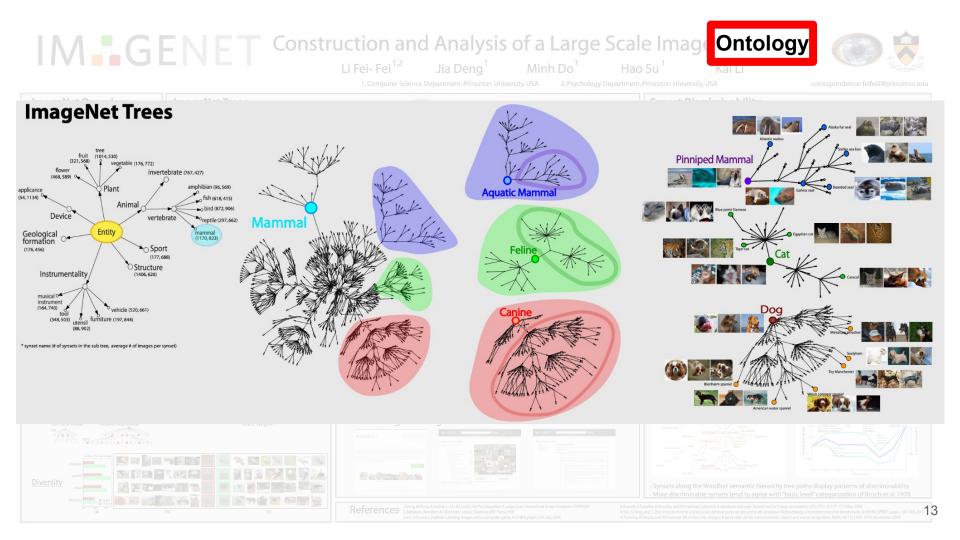
1. What is LCA distance?

2. Why should we use LCA distance?

3. How can we use LCA distance to improve model generalization?





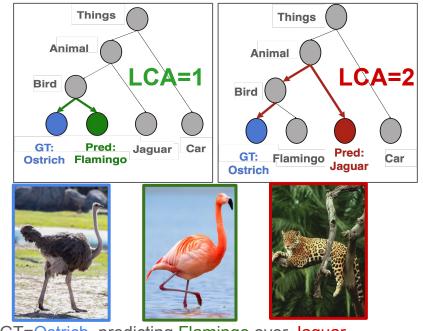


LCA (lowest common ancestor) distance

Over an *ontology*, such as a class hierarchy encoding class relationship, **LCA distance** measures class adjacency.

LCA distance rewards mistakes in prediction that are semantically closer to the ground-truth.

Smaller LCA distance indicate better mistake.



For GT=Ostrich, predicting Flamingo over Jaguar makes better mistakes [1].

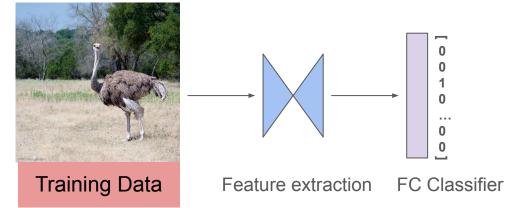
LCA distance is a robust generalization indicator

1. What is LCA distance?

2. Why should we use LCA distance?

3. How can we use LCA distance to improve model generalization?

What makes a model generalize better?



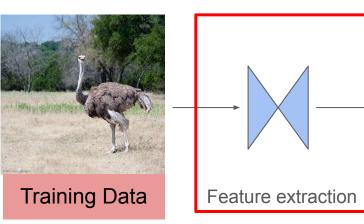
A model learns predictive features by likelihood maximization, resulting into an ability to associate input image to target labels.

What makes a model generalize better?

0 0

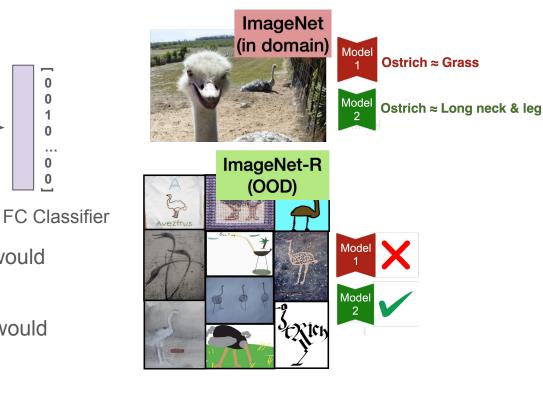
0 . . .

0 0

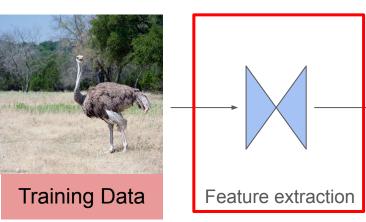


Models learning spurious correlation would fail to generalize to OOD data.

Model learning transferable features would generalize better.

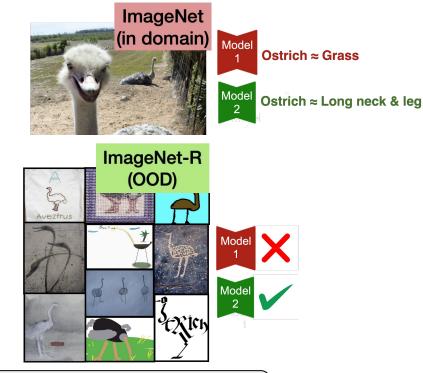


What makes a model generalize better?



Models learning <u>spurious correlation</u> would fail to generalize to OOD data.

Model learning <u>transferable features</u> would generalize better.



As benchmarks often simulate human-world ontology, the desired transferable features should align with human-defined ontology.

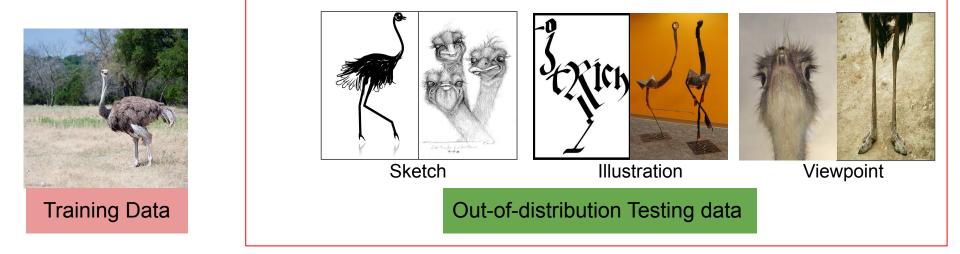
0

0

0

FC Classifier

Flashback: Models will encounter OOD testing data

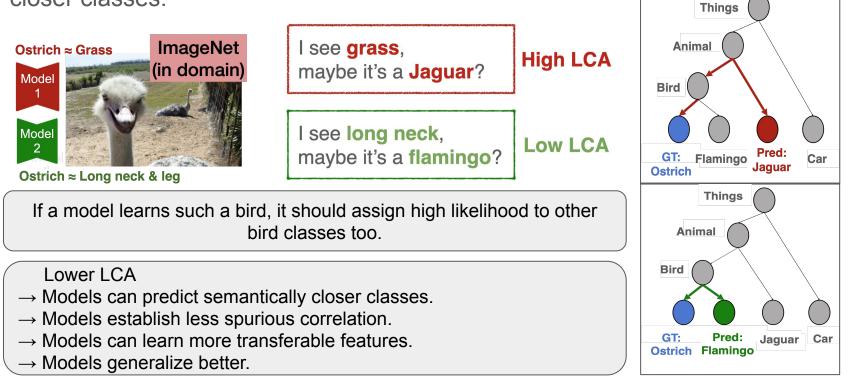


We hope models to generalize to OOD testing data, which has severe visual shift from the training data.

Given a random pool of models, how can we predict which model generalizes to OOD testing data better?

Mistake prediction is cue for predictive features

Hypothesis: Transferable features are shared among semantically closer classes.



20

LCA-on-the-Line is a robust indicator of generalization

LCA distance is a general metric, only depending on the relative ranking among class predictions. It is

- agnostic to <u>model modality</u>
- agnostic to training- and testing-sets attributes
- agnostic to the amount of training data
- easy to calculate and requires only one-time inference.

Experiments

Experiment Settings

ID dataset / Source datasets: ImageNet

ImageNet-V2

OOD datasets / Target datasets:

ImageNet v2 / Sketch / Rendition / Adversarial / ObjectNet

LCA-on-the-Line evaluates on severe visual shift datasets

ImageNet-A

ObjectNet

ImageNet

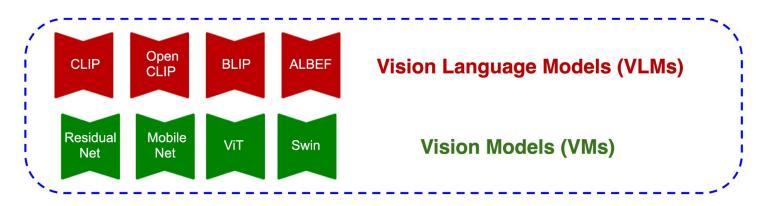
ImageNet-R

ImageNet-S

Experiment Settings

75 models:

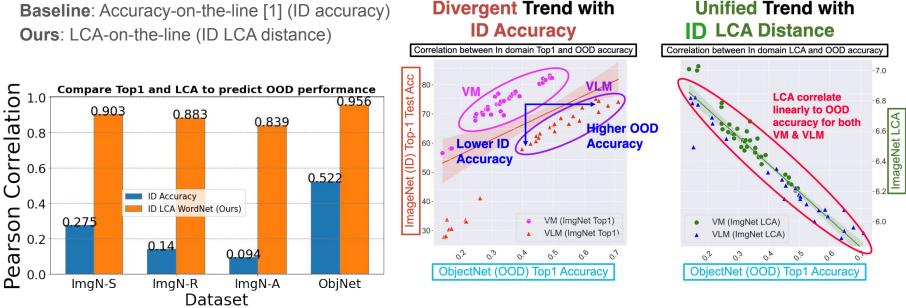
- 36 pre-trained Vision Models (VMs) on ImageNet
 - [AlexNet,, SwinTransformer]
- 39 pre-trained Vision-Language Models (VLMs) using internet data
 - [ALBEF, BLIP, CLIP*7, OpenCLIP*30]



Experiment 1: Predict OOD from ID metric

Correlation comparison against OOD accuracy.

- **Baseline**: Accuracy-on-the-line [1] (ID accuracy)



VMs and VLMs:

LCA distance restores the 'on-the-line' relationship across VMs & VLMs, displaying a strong correlation.

[1] J. Miller, et al., "Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization", ICML, 2021

VMs and VLMs:

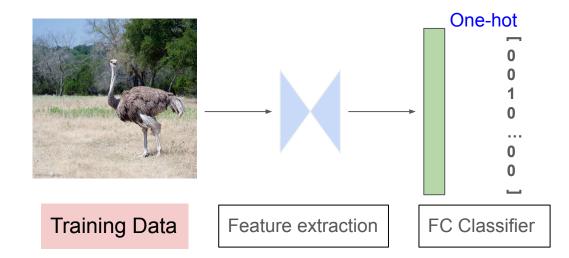
Unified Trend with

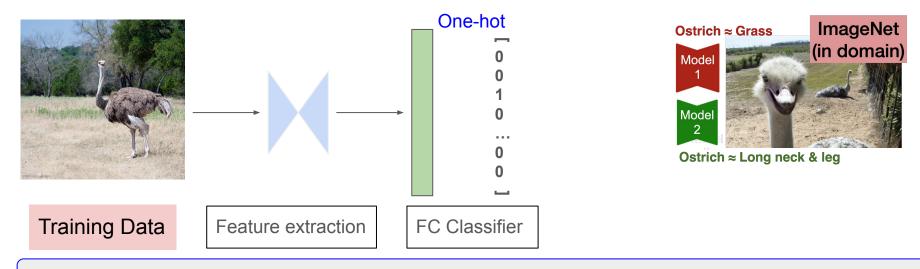
LCA distance is a robust generalization indicator

1. What is LCA distance?

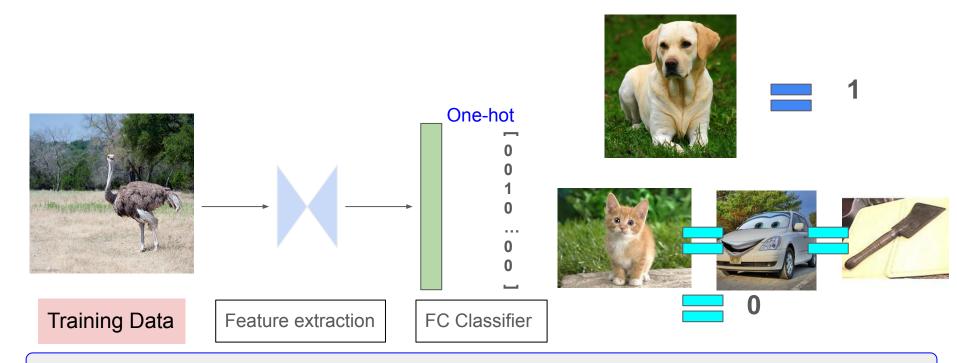
2. Why should we use LCA distance?

3. How can we use LCA distance to improve model generalization?





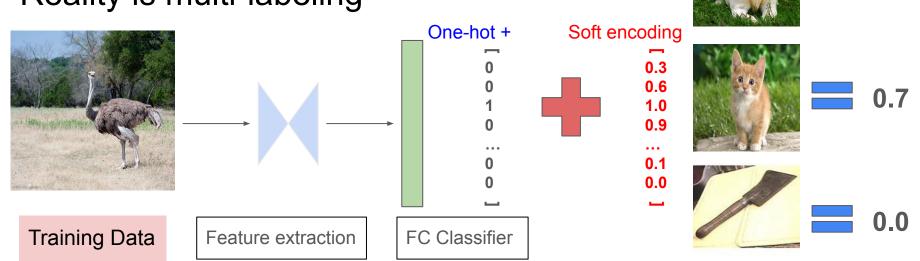
Only adopting one-hot-encoding is vulnerable to spurious correlation during training.



Only adopting one-hot-encoding is vulnerable to spurious correlation during training.

One-hot encoding assumes that the likelihood of all the non-GT classes are *created equal*. Discrimination between semantic closer class will force model ignore shared feature, which is more transferable.

Reality is multi-labeling



Only adopting one-hot-encoding is vulnerable to spurious correlation during training.

One-hot encoding assumes that the likelihood of all the non-GT classes are *created equal*. Discrimination between semantic closer class will force model ignore shared feature, which is more transferable.

Adopting soft labels (constructed from the ontology) can better regularize the training, resulting into a more generalizable model to OOD data.

Experiment 2: Linear Probing Experiment

- Baseline: Trained with <u>cross entropy loss</u>
- Ours: Trained with cross entropy loss + soft label loss from hierarchy



LCA distance as robust generalization indicator

1. What is LCA distance?

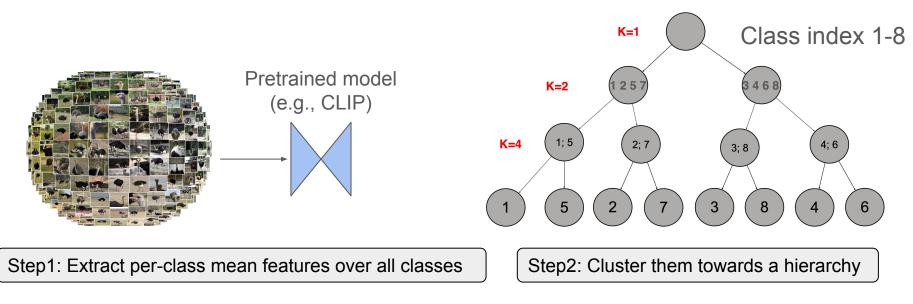
2. Why should we use LCA distance?

3. How can we use LCA distance to improve model generalization?

Wait! My dataset doesn't have a predefined hierarchy?

Latent hierarchy(class distance) on any datasets with clustering

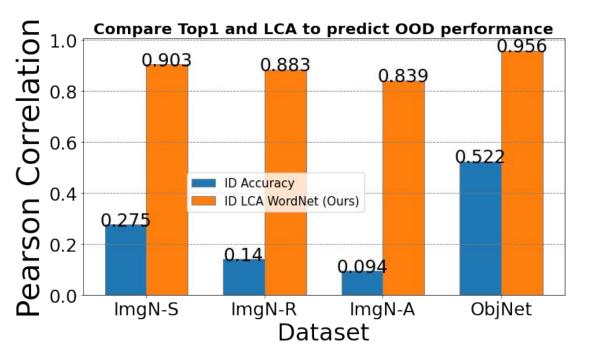
- WordNet hierarchy is manually designed.
- We can also construct a hierarchy by clustering per-class features.



Experiment 1: Predict OOD from ID

Correlation comparison against OOD accuracy.

- **Baseline**: Accuracy-on-the-line[1] (ID accuracy)
- Ours: LCA-on-the-line (ID LCA distance on WordNet)



Experiment 1: Predict OOD from ID

Correlation comparison against OOD accuracy.

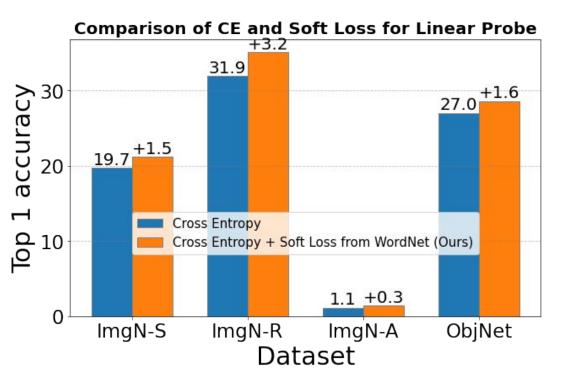
- **Baseline**: Accuracy-on-the-line[1] (ID accuracy)
- Ours: LCA-on-the-line (ID LCA distance on WordNet)
- Ours: LCA-on-the-line (ID LCA distance on Latent Hierarchy)



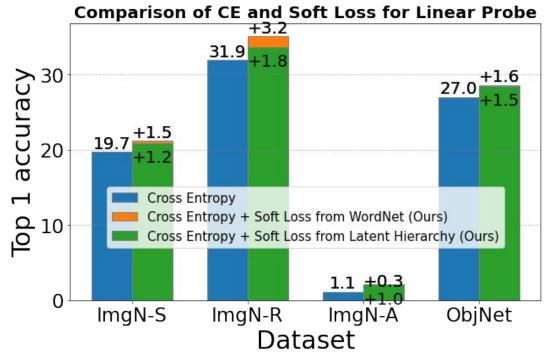
Baseline: training with cross entropy loss

Experiment 2: Linear Probing over Res18

Ours: training with cross entropy loss + soft label loss (WordNet)

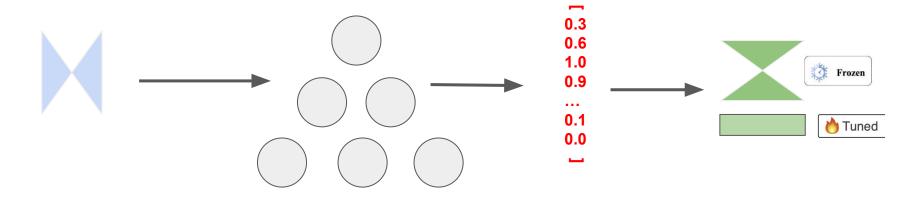


- Experiment 2: Linear Probing over Res18
- Baseline: training with cross entropy loss
 - Ours: training with cross entropy loss + soft label loss (WordNet)
 - Ours: training with cross entropy loss + soft label loss (Latent)



Learning with a constructed latent hierarchy consistently boosts OOD performance.

Recall: Construct soft labels from latent hierarchy



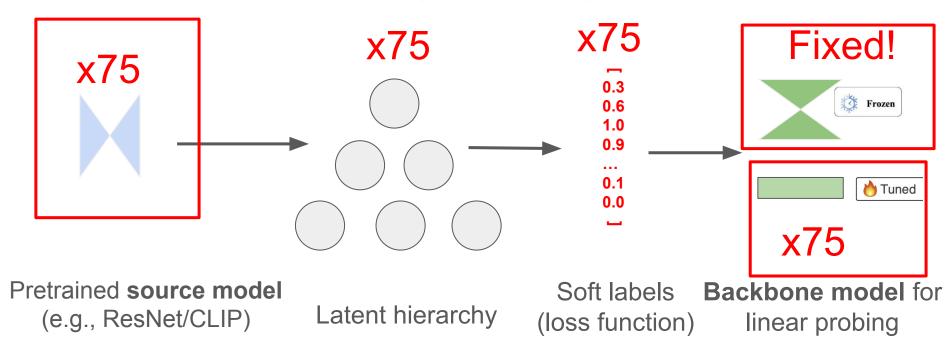
Pretrained **source model** (e.g., ResNet/CLIP)

Latent hierarchy

Soft labels **Backbone model** for (loss function) linear probing

75 pre-trained model can construct 75 groups soft labels

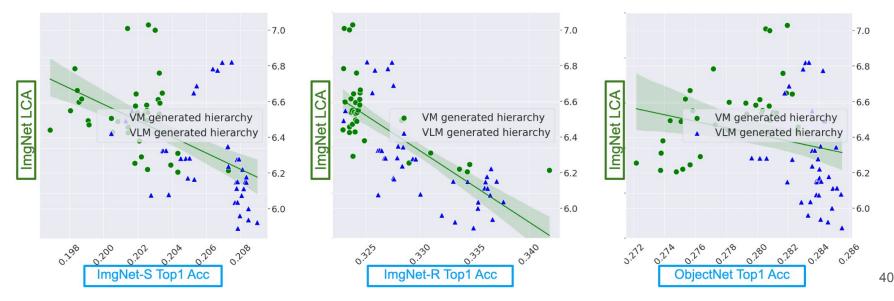
Do better soft labels emerge in more generalizable models?



Do more generalizable models form better soft labels??

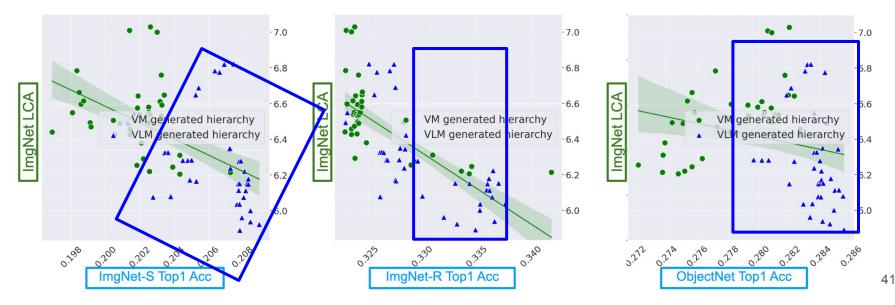
Do better soft labels emerge in more generalizable models? Yes!

- *y*-axis: LCA distance on ImageNet (ID dataset) between WordNet hierarchy and each of the source pretrained models (that generate hierarchies).
- *x*-axis: top-1 accuracy on an OOD dataset by linear probing over each of the generated hierarchies.



Alternative view behind VLM's generalization

- Soft labels generated by VLMs help more for OOD generalization than VMs (cf. better LCA and better OOD top-1).
- Note that benchmarks often simulate human-world ontology (e.g., top-1 accuracy on OOD data). That said, VLM's high-level perceptual understanding better aligns with human-world ontology.



Conclusion

- 1. LCA distance robustly predict models' OOD performance.
- 2. LCA distance suggests how to improve models' generalization.
- 3. LCA distance offers insights why VLMs generalize so well.

Paper updated after camera ready!

Conclusion

- 1. LCA distance robustly predict models' OOD performance.
- 2. LCA distance suggests how to improve models' generalization.
- 3. LCA distance offers insights why VLMs generalize so well.

Paper updated after camera ready!

LCA-on-the-Line:

Benchmarking Out of Distribution Generalization with Class Taxonomies

Poster Section: Hall C 4-9 #701, 11:30

